Administración de memoria
La memoria es un recurso escaso, y para aprovecharla bien hay que administrarla bien. A pesar de que la memoria es más barata cada día, los requerimientos de almacenamiento crecen en proporción similar.
Por otra parte, la memoria más rápida es obviamente más cara, por lo que la mayoría de los computadores tiene una jerarquía de memoria. Por ejemplo, en un Pentium típico:
1. Caché de nivel 1: 8 KB empaquetados dentro del chip; por lo mismo, la velocidad de acceso es de unos pocos nanosegundos.
2. Caché de nivel 2: 256 a 512 KB, 12-20 ns, U$20/MB
3. Memoria RAM: 8 a 32 MB, 70ns, U$2.5/MB
4. Disco duro. Para almacenamiento estable, y también para extender la RAM de manera virtual.
4GB, 8ms, U$0.08/MB.
5. Cinta. 1 a 40 GB. U$0.01/MB.
Administrador de memoria secundaria en los espacio de su profesor.
La memoria es uno de los principales recursos de la computadora, la cual debe de administrarse con mucho cuidado. Aunque actualmente la mayoría de los sistemas de cómputo cuentan con una alta capacidad de memoria, de igual manera las aplicaciones actuales tienen también altos requerimientos de memoria, lo que sigue generando escasez de memoria en los sistemas multitarea y/o multiusuario.
La parte del sistema operativo que administra la memoria se llama administrador de memoria y su labor consiste en llevar un registro de las partes de memoria que se estén utilizando y aquellas que no, con el fin de asignar espacio en memoria a los procesos cuando éstos la necesiten y liberándola cuando terminen, así como administrar el intercambio entre la memoria principal y el disco en los casos en los que la memoria principal no le pueda dar capacidad a todos los procesos que tienen necesidad de ella.
Los sistemas de administración de memoria se pueden clasificar en dos tipos: los que desplazan los procesos de la memoria principal al disco y viceversa durante la ejecución y los que no.
El propósito principal de una computadora es el de ejecutar programas, estos programas, junto con la información que accesan deben de estar en la memoria principal (al menos parcialmente) durante la ejecución.
Para optimizar el uso del CPU y de la memoria, el sistema operativo debe de tener varios procesos a la vez en la memoria principal, para lo cual dispone de varias opciones de administración tanto del procesador como de la memoria. La selección de uno de ellos depende principalmente del diseño del hardware para el sistema. A continuación se observarán los puntos correspondientes a la administración de la memoria.
MEMORIA REAL
La memoria real o principal es en donde son ejecutados los programas y procesos de una computadora y es el espacio real que existe en memoria para que se ejecuten los procesos. Por lo general esta memoria es de mayor costo que la memoria secundaria, pero el acceso a la información contenida en ella es de más rápido acceso. Solo la memoria cache es más rápida que la principal, pero su costo es a su vez mayor.
SIN INTERCAMBIO
1.1.1.- Monoprogramación sin intercambio o paginación
Cuando solo se tiene un proceso que ocupe la memoria a la vez, el esquema de la administración de la memoria es el más sencillo que hay. Sin embargo, éste método ya no tiene aplicación en la actualidad, ya que era visto en las computadoras con sistemas operativos de un solo usuario y una sola tarea. El usuario introducía su disco a la computadora (por lo general, la máquina no contaba con disco duro) y ejecutaba su aplicación, la cual acaparaba toda la máquina.
Fig.1. Ejemplos de distribución de la memoria principal con un sistema operativo y un solo proceso de usuario
La figura 1 muestra la organización de la memoria usando este sistema. La memoria se divide entre el sistema operativo y el proceso de un solo usuario. La más conocida es la que muestra el inciso c, que es la usada por las PC’ de IBM. Los controladores de dispositivo los almacena en memoria ROM, en un bloque de 8K de la parte superior del espacio de direcciones de 1M.
El ejemplo más claro de este esquema es el que podemos ver en el sistema operativo MS-DOS, en que el usuario escribe un comando al sistema y al ejecutarse el sistema operativo lo carga a memoria desde el disco y realiza sus funciones. Cuando el proceso termina la memoria es liberada y le muestra al usuario el indicador de comandos (prompt) en la pantalla.
1.1.2.- Multiprogramación y uso de memoria
Esta organización facilita la programación de una aplicación al dividirla en dos o más procesos. Además ofrece la capacidad de tener más de un proceso a la vez en memoria así puede ofrecer servicios a varios usuarios a la vez.
El esquema de multiprogramación incrementa el aprovechamiento del CPU, dado que a diferencia de la monoprogramación en donde solo un proceso reside en memoria a la vez limitando el uso del procesador a las llamadas que requiera dicho proceso, desperdiciando un promedio del 80% del tiempo del procesador. En cambio la multiprogramación, al tener varios procesos en la memoria principal y dividiéndose el tiempo de uso del procesador, logra reducir drásticamente el desperdicio del procesador.
1.1.3.- Multiprogramación con particiones fijas
Para poder implementar la multiprogramación, se puede hacer uso de particiones fijas o variables en la memoria. En el caso de las particiones fijas, la memoria se puede organizar dividiéndose en diversas partes, las cuales pueden variar en tamaño. Esta partición la puede hacer el usuario en forma manual, al iniciar una sesión con la máquina.
Una vez implementada la partición, hay dos maneras de asignar los procesos a ella. La primera es mediante el uso de una cola única (figura 2a) que asigna los procesos a los espacios disponibles de la memoria conforme se vayan desocupando. El tamaño del hueco de memoria disponible es usado para localizar en la cola el primer proceso que quepa en él. Otra forma de asignación es buscar en la cola el proceso de tamaño mayor que se ajuste al hueco, sin embargo hay que tomar en cuenta que tal método discrimina a los procesos más pequeños. Dicho problema podría tener solución si se asigna una partición pequeña en la memoria al momento de hacer la partición inicial, el cual sería exclusivo para procesos pequeños.
CON INTERCAMBIO
1.2.1.- Multiprogramación con particiones variables
Este esquema fue originalmente usado por el sistema operativo IBM OS/360 (llamado MFT), el cual ya no está en uso.
El sistema operativo lleva una tabla indicando cuáles partes de la memoria están disponibles y cuáles están ocupadas. Inicialmente, toda la memoria está disponible para los procesos de usuario y es considerado como un gran bloque o hueco único de memoria. Cuando llega un proceso que necesita memoria, buscamos un hueco lo suficientemente grande para el proceso. Si encontramos uno, se asigna únicamente el espacio requerido, manteniendo el resto disponible para futuros procesos que requieran de espacio.
Consideremos el ejemplo de la figura 3, en donde se cuenta un espacio reservado para el sistema operativo en la memoria baja de 400K y un espacio disponible para procesos de usuario de 2160K, siendo un total de memoria del sistema de 2560K. Dada la secuencia de procesos de la figura y usando un algoritmo de First Come – First Served (FCFS) se puede asignar de inmediato memoria a los procesos P1, P2 y P3, creando el mapa de memoria en el cual queda un hueco de 260K que ya no puede ser utilizado por el siguiente proceso dado que no es suficiente para abarcarlo.
Usando un proceso de asignación Round-Robin con un quantum de 1 unidad de tiempo, el proceso P2 terminaría en la unidad de tiempo 14, liberando esa cantidad de memoria, como se muestra en la figura 4(b). Entonces el sistema operativo checa la lista de trabajos y asigna el siguiente proceso que quepa en el espacio de memoria liberado. El proceso P4 produce el mapa de memoria que se muestra en la figura 4(c). El proceso P1 terminará en la unidad de tiempo 28 para producir el mapa de la figura 4(d) y entonces se asigna el proceso P5 generando el mapa de la figura 4(e).
Cuando a un proceso se le asigna un espacio y es cargado a la memoria principal, puede entonces competir para el uso del CPU.
1.2.1.1.- Compactación de memoria
Cuando un proceso llega y necesita memoria, el sistema operativo busca en la tabla de huecos alguno lo suficientemente grande para el proceso. Si el hueco es muy grande, lo parte en dos. Una parte es asignada al proceso y la otra se identifica como hueco. Cuando el proceso termina y la memoria es liberada, el espacio es identificado como un hueco más en la tabla y si el nuevo hueco es adyacente con otro, ambos huecos se unen formando un solo hueco más grande. En ese momento se debe de checar si no existen procesos a los que este nuevo hueco pueda darles cabida.
1.2.1.2.- Asignación dinámica
El proceso de compactación del punto anterior es una instancia particular del problema de asignación de memoria dinámica, el cual es el cómo satisfacer una necesidad de tamaño n con una lista de huecos libres. Existen muchas soluciones para el problema. El conjunto de huecos es analizado para determinar cuál hueco es el más indicado para asignarse. Las estrategias más comunes para asignar algún hueco de la tabla son:
- Primer ajuste: Consiste en asignar el primer hueco con capacidad suficiente. La búsqueda puede iniciar ya sea al inicio o al final del conjunto de huecos o en donde terminó la última búsqueda. La búsqueda termina al encontrar un hueco lo suficientemente grande.
- Mejor ajuste: Busca asignar el espacio más pequeño de los espacios con capacidad suficiente. La búsqueda se debe de realizar en toda la tabla, a menos que la tabla esté ordenada por tamaño. Esta estrategia produce el menor desperdicio de memoria posible.
- Peor ajuste: Asigna el hueco más grande. Una vez más, se debe de buscar en toda la tabla de huecos a menos que esté organizada por tamaño. Esta estrategia produce los huecos de sobra más grandes, los cuales pudieran ser de más uso si llegan procesos de tamaño mediano que quepan en ellos.
Se ha demostrado mediante simulacros que tanto el primer y el mejor ajuste son mejores que el peor ajuste en cuanto a minimizar tanto el tiempo del almacenamiento. Ni el primer o el mejor ajuste es claramente el mejor en términos de uso de espacio, pero por lo general el primer ajuste es más rápido.
1.2.2.- Administración de la memoria con mapas de bits
Este tipo de administración divide la memoria en unidades de asignación, las cuales pueden ser tan pequeñas como unas cuantas palabras o tan grandes como varios kilobytes. A cada unidad de asignación le corresponde un bit en el mapa de bits, el cual toma el valor de 0 si la unidad está libre y 1 si está ocupada (o viceversa).
Un mapa de bits es una forma sencilla para llevar un registro de las palabras de la memoria en una cantidad fija de memoria, puesto que el tamaño del mapa sólo depende del tamaño de la memoria y el tamaño de la unidad de asignación.
1.2.3.- Administración de la memoria con listas ligadas
Otra forma de mantener un registro de la memoria es mediante una lista ligada de los segmentos de memoria asignados o libres, en donde un segmento puede ser un proceso o un hueco entre dos procesos. La memoria de la figura 7(a) está mostrada como una lista ligada de segmentos en la figura 7(b). Cada entrada de la lista especifica un hueco (H) o un proceso (P), la dirección donde comienza, su longitud y un apuntador a la siguiente entrada.
1.2.4.- Asignación del hueco de intercambio
En algunos sistemas, cuando el proceso se encuentra en la memoria, no hay un hueco en el disco asignado a él. Cuando deba intercambiarse, se deberá asignar un hueco para él en el área de intercambio del disco. Los algoritmos para la administración del hueco de intercambio son los mismos que se utilizan para la administración de la memoria principal.
En otros sistemas, al caerse un proceso, se le asigna un hueco de intercambio en el disco. Cuando el proceso sea intercambiado, siempre pasará al hueco asignado, en vez de ir a otro lugar cada vez. Cuando el proceso concluya, se libera el hueco de intercambio. La única diferencia es que el hueco en disco necesario para un proceso debe representarse como un número entero de bloques del disco. Por ejemplo, un proceso de 13.5 K debe utilizar 14K (usando bloques de 1K).
1.2.5.- Fragmentación
La fragmentación es la memoria que queda desperdiciada al usar los métodos de gestión de memoria que se vieron en los métodos anteriores. Tanto el primer ajuste, como el mejor y el peor producen fragmentación externa.
La fragmentación es generada cuando durante el reemplazo de procesos quedan huecos entre dos o más procesos de manera no contigua y cada hueco no es capaz de soportar ningún proceso de la lista de espera. Tal vez en conjunto si sea espacio suficiente, pero se requeriría de un proceso de defragmentación de memoria o compactación para lograrlo. Esta fragmentación se denomina fragmentación externa.
Existe otro tipo de fragmentación conocida como fragmentación interna, la cual es generada cuando se reserva más memoria de la que el proceso va realmente a usar. Sin embargo a diferencia de la externa, estos huecos no se pueden compactar para ser utilizados. Se debe de esperar a la finalización del proceso para que se libere el bloque completo de la memoria.
REFERENCIAS BIBLIOGRÀFICA
No hay comentarios:
Publicar un comentario